June 08, 2023


Effects of inhaling essential oils of Citrus limonum L., Santalum album, and Cinnamomum camphora on human brain activity







Essential oil inhalation has various effects on the human body. However, its effects on cognitive function and the neural basis remain unclear. We aimed to investigate the effects of inhaling lemon, sandalwood, and kusunoki essential oils on human brain activity and memory function using multichannel electroencephalography and brain source activity estimation.




Participants performed a letter 2-back working memory task during electroencephalography measurements before and after essential oil inhalation. Brain activation, task difficulty, concentration degree, and task performance were compared among the essential oils and a fragrance-free control.




Task performance significantly improved after lemon essential oil inhalation. Lemon essential oil inhalation resulted in delta and theta band activation in the prefrontal cortex, including the anterior cingulate gyrus and orbitofrontal cortex, superior temporal gyrus, parahippocampal gyrus, and insula. During inhalation, persistent alpha band activation was observed in the prefrontal cortex, including the anterior cingulate gyrus. Sandalwood essential oil inhalation led to beta and gamma band activation in the prefrontal cortex, including the anterior cingulate gyrus.




Our findings demonstrate that different essential oils have specific effects on brain activity related to emotion and memory processing.


Keywords: Cinnamomum camphora; Citrus limonum L; Santalum album; essential oil; human brain.



1 序論

Inhaling essential oils reduces stress (Chamine & Oken, 2016; Heuberger et al., 2006; H?ferl et al., 2016; Kim et al., 2011; Motomura et al., 2001; Shimada et al., 2011; Toda & Morimoto, 2008), maintains concentration (Ho & Spence, 2005; Kaneki et al., 2005), and improves sleep (Fismer & Pilkington, 2012; Hirokawa et al., 2012) and dementia symptoms (Ballard et al., 2002; Holt et al., 2003; Smallwood et al., 2001) in humans. Human cognitive functions, including perception, attention, memory, language, thought, and emotion, collectively facilitate higher-order processing, including decision making and creativity. Inhaling essential oils reduces stress (Chamine & Oken, 2016; Heuberger et al., 2006; H?ferl et al., 2016; Kim et al., 2011; Motomura et al., 2001; Shimada et al., 2011; Toda & Morimoto, 2008), maintains concentration (Ho & Spence, 2005; Kaneki et al., 2005), and improves sleep (Fismer & Pilkington, 2012; Hirokawa et al., 2012) and dementia symptoms (Ballard et al., 2002; Holt et al., 2003; Smallwood et al., 2001) in humans. Human cognitive functions, including perception, attention, memory, language, thought, and emotion, collectively facilitate higher-order processing, including decision making and creativity. The effects of essential oil inhalation on these functions and their neural basis remain unclear. A study on the relationship between essential oil inhalation and cognitive function (Moss et al., 2008) reported that inhaling peppermint oil improved memory function. Moreover, an electroencephalography (EEG) study reported that inhaling lavender oil significantly attenuated alpha band (8-10 Hz) EEG activity in the parietal and posterior temporal brain regions (Masago et al., 2000). Moreover, inhaling lavender oil significantly increased beta band (21-30 Hz) EEG activity in the frontal region (Diego et al., 1998). Although some studies have reported on the effects of lemon oil inhalation on stress (K omiya et al., 2006) and pain reduction (Ikeda et al., 2014) and on the neural mechanisms underlying these effects, they were mostly conducted on rodents. Previous studies have used physiological indices associated with the autonomic nervous system, including heart rate and skin conductance response, to analyze the stress-reducing effects of sandalwood oil inhalation (Heuberger et al., 2006; H?ferl et al., 2016); however, none reported on cognitive function and human brain activity.

精油の吸入は、ストレスを軽減し(Chamine & Oken, 2016; Heuberger et al., 2006; H?ferl et al., 2016; Kim et al., 2011; Motomura et al., 2001; Shimada et al., 2011; Toda & Morimoto, 2008)、集中力を維持(Ho & Spence, 2005; Kaneki et al、 2005)、睡眠改善(Fismer & Pilkington, 2012; Hirokawa et al., 2012)、認知症改善(Ballard et al. 知覚、注意、記憶、言語、思考、感情を含む人間の認知機能は、集合的に意思決定や創造性を含む高次の処理を促進します。精油の吸入がこれらの機能およびその神経基盤に及ぼす影響については、依然として不明な点が多い。精油の吸入と認知機能の関係に関する研究(Moss et al.、2008年)は、ペパーミントオイルの吸入が記憶機能を改善することを報告した。さらに、脳波の研究では、ラベンダーオイルの吸入により、頭頂部および後頭部の脳領域におけるアルファバンド(8-10Hz)の脳波活動が有意に減衰することが報告されている(Masago et al.、2000年)。さらに、ラベンダーオイルを吸入すると、前頭部のβ帯(21-30Hz)
の脳波活動が有意に上昇した(Diego et al., 1998)。レモンオイルの吸入によるストレス軽減効果(小宮ら、2006)や疼痛軽減効果(池田ら、2014)、およびこれらの効果の基盤となる神経機構について報告した研究もあるが、その多くはげっ歯類を用いて行われたものであった。これまでの研究では、心拍数や皮膚コンダクタンス反応など自律神経系に関連する生理指標を用いて、サンダルウッドオイル吸入のストレス軽減効果を解析しているが(Heuberger et al., 2006; H?ferl et al., 2016)、認知機能や人間の脳活動について報告しているものはなかった。

skin conductance:皮膚コンダクタンス

電気皮膚活動EDAの伝統的な理論は皮膚の汗腺の状態で皮膚抵抗が変化することに基づく。汗は交感神経系によってコントロールされているため[4]、皮膚コンダクタンスは心理的または身体的興奮の兆候だというものだ。 もし自律神経系の交感神経側が興奮した場合、汗腺の活動は活発化され、皮膚コンダクタンスの上昇につながる。このように、皮膚コンダクタンスは感情的または交感神経系の反応の指標になりうる[5]。ガルバニック皮膚反応ウィキペディア(より

The limbic system, which is close to the olfactory nerve, is considered the most important pathway for direct signal transmission from the olfactory nerve to the brain after intranasal absorption (Kandel et al., 2012). The limbic system comprises the hippocampus, which controls memory functions (Burgess et al., 2002; Phelps, 2004), and the amygdala (Davis & Whalen, 2001; Phelps, 2004) and anterior cingulate cortex (Bush et al., 2000), which control emotional functions. Therefore, essential oil inhalation may influence memory and emotional functions in humans. In this study, we focused on memory function while examining the effects of essential oil inhalation on cognitive function and human brain activity.

嗅神経に近い大脳辺縁系は、経鼻吸収後に嗅神経から脳へ直接信号を伝達する最も重要な経路と考えられている(Kandel et al.、2012)。大脳辺縁系は、記憶機能を司る海馬(Burgess et al., 2002; Phelps, 2004)、感情機能を司る扁桃体(Davis & Whalen, 2001; Phelps, 2004)および前帯状皮質(Bush et al., 2000)からなります。したがって、精油の吸入は、ヒトの記憶や感情機能に影響を与える可能性がある。本研究では、精油の吸入が認知機能やヒトの脳活動に及ぼす影響を調べながら、記憶機能に着目した。

anterior cingulate cortex :前帯状皮質

EEG measurements acquired at high temporal resolutions can reveal the time course of brain activation after essential oil inhalation. Moreover, multichannel head-surface EEG with exact low-resolution brain electromagnetic tomography (Pascual-Marqui et al., 2011; Pascual-Marqui et al., 1994) can facilitate brain source activity estimation, including that within deep brain regions, such as the hippocampus and anterior cingulate cortex (Cannon et al., 2005; Pizzagalli et al., 2004).

高時間分解能で取得した脳波測定は、精油吸入後の脳活性化の時間経過を明らかにすることができる。さらに、正確な低解像度脳電磁トモグラフィーを用いた多チャンネル頭表脳波(Pascual-Marqui et al., 2011; Pascual-Marqui et al., 1994)により、海馬や前帯状皮質などの脳深部領域内のものを含む脳源活動の推定が容易になる(Cannon et al., 2005; Pizzagalli et al.)

Here, we aimed to evaluate the effects of inhaling lemon, sandalwood, and kusunoki (i.e., camphor) essential oils on human brain activity and memory function using EEG and a working memory task. Numerous brain regions are involved in working memory. Additionally, specific EEG frequencies are involved in human working memory functions. Working memory activity in the delta band could be associated with the frontal lobe (de Vries et al., 2018; Zarjam et al., 2011) and parahippocampal gyrus (Imperatori et al., 2013). Moreover, numerous studies have demonstrated the importance of the theta band in the prefrontal cortex, especially in the medial prefrontal cortex (Gevins et al., 1998; Hsieh & Ranganath, 2014; Jensen & Tesche, 2002; Meltzer et al., 2008; Onton et al., 2005; Sauseng et al., 2010). We hypothesized that essential oil inhalation would activate EEG signals in the frequency bands of the brain regions involved in working memory task performance. This is the first study to investigate the effects of essential oil inhalation on the human brain, including the deep regions, using a memory demanding task.

そこで、レモン、サンダルウッド、クスノキの精油の吸入がヒトの脳活動や記憶機能に及ぼす影響を、脳波とワーキングメモリ課題を用いて評価することを目的としました。ワーキングメモリには多数の脳領域が関与している。さらに、特定の脳波周波数がヒトのワーキングメモリ機能に関与している。デルタ帯のワーキングメモリ活動は、前頭葉(de Vries et al., 2018; Zarjam et al., 2011)および海馬傍回(Imperatori et al., 2013)に関連する可能性があります。さらに、多くの研究が、前頭前皮質、特に内側前頭前皮質におけるシータ帯の重要性を示している(Gevins et al., 1998; Hsieh & Ranganath, 2014; Jensen & Tesche, 2002; Meltzer et al., 2008; Onton et al., 2005; Sauseng et al., 2010).我々は、精油の吸入により、ワーキングメモリ課題の遂行に関与する脳領域の周波数帯の脳波信号が活性化すると仮定した。精油の吸入が深部領域を含むヒトの脳に及ぼす影響を、記憶負荷の高い課題を用いて検討した初めての研究である。

frontal lobe 前頭葉
prefrontal cortex 前頭前皮質
medial prefrontal cortex 内側前頭前皮質
parahippocampal gyru : 海馬傍回



前帯状皮質(ぜんたいじょうひしつ、英: Anterior cingulate cortex ACC)は、帯状皮質の前部で、脳の左右の大脳半球間の神経信号を伝達する線維である脳梁を取り巻く"襟"のような形をした領域である。

この領域には背側部 (ブロードマンの脳地図における24野) と腹側部 (ブロードマンの脳地図における32野) が含まれている。前帯状皮質は血圧や心拍数の調節のような多くの自律的機能の他に、報酬予測、意思決定、共感や情動といった認知機能に関わっているとされている。


海馬は大脳側頭葉の内側部で側脳室下角底部に位置し、エピソード記憶等の顕在性記憶の形成に不可欠な皮質部位である(図1)。記憶形成に関与する側頭葉皮質部位には、嗅内野、傍海馬台、前海馬台、海馬台、海馬(アンモン角)、歯状回がある。また、海馬台、海馬、歯状回に、脳梁上部に位置し、中隔方向に連続する構造物である脳梁灰白層を加えて集合的に海馬体 (hippocampal formation) と呼ぶ。


海馬傍回(かいばぼうかい、英: Parahippocampal gyrus)または海馬回(かいばかい、英: hippocampal gyrus)は海馬の周囲に存在する灰白質の大脳皮質領域。大脳内側面の脳回のひとつである。この領域は記憶の符号化及び検索において重要な役割を担っている。この領域の前部は嗅周皮質 (perirhinal cortex) 及び、嗅内皮質 (entorhinal cortex) を含んでいる。海馬傍皮質 (parahippocampal cortex) という用語は海馬傍回の後部と紡錘状回の内側部を指して用いられる。







| | Comments (0)

June 06, 2023


Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity




Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown.


high-frequency oscillations 高周波振動(γ・ガンマ帯域を超える80 Hz以上の脳波活動である。)

Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex.We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans.


gamma:γ波(ガンマ波)30-100 Hz:認知や記憶などの高次脳機能との関係

We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli.

また、高周波振動の振幅は、匂いがある場合にのみ、匂いを嗅ぎ始める直後の低周波信号の位相によって組織化されることもわかりました。我々の知見は、シータ振動に関するこれまでの研究を補強し、ヒト梨状皮質のガンマ振動が匂いの同定の知覚に重要であることを示唆し、ヒト脳の匂いに対する特徴的な電気生理学的応答の堅牢な同定を構成する。 今後の研究では、私たちが特定した明確な振動が匂い刺激の明確な知覚的特徴を反映しているかどうかが決定されます。
















| | Comments (0)

June 02, 2023


New Insights Into How the Brain Processes Scents



Featured Neuroscience June 6, 2017

Summary: Theta oscillations may play an important role in olfactory processing, a new study reports.


Source: Northwestern Medicine.


Theta oscillations, a type of rhythmic electrical activity that waxes and wanes four to eight times per second, may play a fundamental role in processing scent in the human brain, according to a new study recently published in Neuron.


The use of intracranial EEG recordings in patients with medically resistant epilepsy allowed Jay Gottfried, MD, PhD, professor of Neurology, and his team to characterize, for the first time, the time-frequency dynamics of odor processing in the human piriform cortex, a region in the brain important for smell.


intracranial EEG recordings ; 頭蓋内脳波記録

The study we did here was to understand what happens at the microstructural level of the human brain when you smell an odor, Gottfried said. The advantage of the approach is we can record the physiological rhythms of the brain using these electrodes in this unique and rare patient population.


They found that odors could be decoded as early as 110 milliseconds from a person’s first sniff.


A lot of people think that the sense of smell is a very slow sense, so this study highlights the speed of the sense of smell and relates it to its biological underpinnings, Gottfried said.


Heidi Jiang, a graduate student and the first author of the study, obtained electrophysiological recordings while patients took part in a cued odor detection task.

本研究の筆頭著者である大学院生のハイディ ジャンは、患者が手がかりとなる匂い検出課題に参加している間に電気生理学的記録を取得しました。

electrophysiological recordings :電気生理学的記録

Jiang and Gottfried found that odor stimulation enhanced theta waves in the piriform cortex, in each of seven patients. Under conditions where patients smelled odorless air, the scientists observed no change in theta waves. Across four different odors, the physiological features of the theta waves could be used to distinguish between each odor.


Based on this rhythmic activity, we can decode which smell the patient has encountered, Gottfried said. These oscillations contain critical information about whether the smell is strawberry, peanut butter, chocolate or garlic, and this information is already available to the brain within a very rapid timeframe.


Additionally, with electrodes in the piriform cortex and hippocampus, they found the presence of odor caused both regions to fall into a synchronized rhythm, suggesting that theta oscillations facilitate the coordination and exchange of information between those two areas.


What is neat about this finding is that the hippocampus is a central hub through which memories can be reactivated and retrieved ? like what ice cream you ate, when you ate it, and where you ate it. Its possible that the hippocampus is able to telegraph some of that information to the piriform cortex to facilitate olfactory processing, Gottfried said.


As noted above, the subjects in the study were patients with medically resistant epilepsy who had existing electrode implants placed for purely clinical considerations, but gave the scientists an opportunity to gather detailed electrophysiological data.


A lot of our work has used fMRI techniques to relate brain activity patterns in the human brain to different odor perceptual states such as memory, but the fMRI work provides a very limited understanding of the mechanisms and timing that support the sense of smell. So it has been a special opportunity to work with these rare epilepsy patients at Northwestern, Gottfried said.


functional magnetic resonance imaging, fMRI 磁気共鳴機能画像法(fMRI

Previous research has shown that theta oscillations are a dominant rhythm in rodent brains, in line with the rapid breathing rate of rats and mice. Gottfried found that while the human brain oscillates at this same theta timescale, humans breathe at a much slower rate.


It poses a question in my mind that, for humans, theta isnt simply something that falls in line with the breathing cycle, but rather might be a more fundamental rhythm for odor processing in the brain, Gottfried said.


A Type of Timekeeping Mechanism


In terms of functional significance, Gottfried believes these oscillations might serve as an internal clock in the brain.


The brain doesnt really have access to an external time reference, and across numerous studies there is more and more evidence to suggest it is the oscillations in the brain that are time-keeping mechanisms, Gottfried said. The brain may use these oscillations to segment information into malleable packets of information.


Malleable 変容可能性

Gottfried said in future studies, he wants to understand more about the importance of theta oscillations in contributing to odor perception and test the hypothesis that theta rhythms might serve as a clock for regulating brain dynamics.




Theta Oscillations Rapidly Convey Odor-Specific Content in Human Piriform Cortex




Odor elicits theta power selectively in human piriform cortex within 500 ms of sniff ok


Presence (versus absence) of odor enhances piriform-hippocampal theta phase locking


phase locking 位相ロック

Odor-specific content can be decoded from piriform oscillations as early as 110 ms


ms・milli second: ミリセカンド, ミリ秒 1秒は1000msとなります。







| | Comments (0)

May 29, 2023


The olfactory bulb coordinates the ventral hippocampus-medial prefrontal cortex circuit during spatial working memory performance



working memory:ワーキングメモリ:作業記憶、作動記憶


Neural oscillations synchronize the activity of brain regions during cognitive functions, such as spatial working memory. Olfactory bulb (OB) oscillations are ubiquitous rhythms that can modulate neocortical and limbic regions. However, the functional connectivity between the OB and areas contributing to spatial working memory, such as the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), is less understood.


Olfactory bulb (OB):嗅球(OB)
Oscillations:振動 活動(神経オシレーション)
Neural oscillations 神経振動
neocortical and limbic regions 新皮質および辺縁系領域。

ventral hippocampus (vHPC) :腹側海馬(vHPC)
腹側海馬の神経細胞は扁桃体や側坐核、前頭前皮質といった脳領域 に投射を持っており(Cenquizca and Swanson, 2007; Arszovszki et al 2014)、これらの脳 領域は恐怖などの情動に関わることが知られている。

medial prefrontal cortex (mPFC)内側前頭前皮質(mPFC):脳 領域は恐怖などの情動に関係

Hence, we investigated functional interaction between OB and the vHPC-mPFC circuit during the spatial working memory performance in rats. To this end, we analyzed the simultaneously recorded local field potentials from OB, vHPC, and mPFC when rats explored the Y-maze and compared the brain activities of correct trials vs. wrong trials. We found that coupling between the vHPC and mPFC was augmented during correct trials.


The enhanced coherence of OB activity with the vHPC-mPFC circuit at delta (< 4 Hz) and gamma (50-80 Hz) ranges were observed during correct trials. The cross-frequency analysis revealed that the OB delta phase increased the mPFC gamma power within corrected trials, indicating a modulatory role of OB oscillations on mPFC activity during correct trials.


脳波コヒーレンスとは、2つの脳部位間でそれぞれ得ら れた脳波に含まれる周波数成分ごとの相関関係を示すもので、統計学でなじみの深い相関係数の周 波数成分版と捉えることができる。

delta (< 4 Hz) :デルタ波
gamma (50-80 Hz)  ガンマ波

Moreover, the correlation between OB oscillations and the vHPC-mPFC circuit was increased at the delta range during correct trials, exhibiting enhanced synchronized activity of these regions during the cognitive task. We demonstrated a functional engagement of OB connectivity with the vHPC-mPFC circuit during spatial working memory task performance.


Keywords: Functional connectivity; Medial prefrontal cortex; Olfactory bulb; Ventral hippocampus; Working memory.

キーワード 機能的結合、内側前頭前野、嗅球、腹側海馬、作業記憶

The olfactory bulb modulates entorhinal cortex oscillations during spatial working memory





Cognitive functions such as working memory require integrated activity among different brain regions. Notably, entorhinal cortex (EC) activity is associated with the successful working memory task. Olfactory bulb (OB) oscillations are known as rhythms that modulate rhythmic activity in widespread brain regions during cognitive tasks. Since the OB is structurally connected to the EC, we hypothesized that OB could modulate EC activity during working memory performance.


entorhinal cortex (EC) 臭内野(EC)



五 十 嵐  啓 ノルウェー科学技術大学・カヴリ統合脳科学研究所 リサーチアソシエート

緒  言

脳の様々な領域で脳波(EEG)記録を行うと、シー タ(6?12 Hz)・ガンマ(30?100 Hz)等の波長帯の振動 活動(神経オシレーション)が観察されることが知られ ている1?3)。これまでの研究から、これらの神経オシ レーションの同期が、特化した機能をもつ脳領域群を統合させる役割を持つことが示唆されてきた。このような 脳領域群の統合を必要とすると考えられる脳機能の一つに、陳述記憶がある4)。陳述記憶の機能は、脳皮質と海馬との間の情報の橋渡しを行う嗅内皮質(entorhinal cortex)によって担われているが、陳述記憶の記銘・想起の過程において、嗅内皮質と海馬の回路はガンマ波長帯(30?100 Hz)のオシレーションによって相互作用し ていると考えられている。実際、覚醒中の齧歯類ではこの波長帯の活動が多く観察されており、以前我々の研究室では、学習後のラットの嗅内皮質と海馬から同時記録 を行うと、同期したシータ・ガンマ波が見られることを 報告した5)。しかしながら、これらの実験は動物が学習を済ませた後に行われたもの
であり、領域間の振動活動 の同期と、記憶形成との関係は、不明であった。




| | Comments (0)

May 18, 2023


下記はトウリーディング創始者KC Miller (Seeker)さんのFacebook:https://www.facebook.com/SWIHAからです。下記を読み前頭前野と直感に興味を持ち調べたのが今回の"直感の背後にある脳(腹内側前頭前野)"の投稿です。



The spiritual eye is in prefrontal lobe of brain.


As for me, it will forever be my ‘First Front Eye’ responsible the ability to focus, regulate emotions, see and predict the consequences of our thoughts and behaviors! It has been documented that the pre-frontal area process many streams of information instantaneously ? aka our intuition and psychic abilities.


The Brains Behind Intuition




Have a hunch? Maybe you should act on it. Scientists have found key differences in decision-making behavior between normal individuals and those with a certain form of brain damage. The provocative findings, reported in today's issue of Science,* suggest that intuition plays a crucial role in our ability to make smart decisions.


decision-making behavior 意思決定行動

A team led by neuroscientist Antonio Damasio of the University of Iowa College of Medicine in Iowa City gave $2000 of play money and four decks of cards to each of 10 normal volunteers and six patients with damage to the ventromedial prefrontal cortex region of their brain, an area thought to be involved in emotions and decision-making. Such patients perform well on intelligence-quotient and memory tests, but often make disastrous financial and personal decisions, and commonly show little emotion.


the ventromedial prefrontal cortex 腹内側前頭前野

The subjects were told to turn over cards from any deck and to try to win as much money as possible. They didn't know there were two types of decks. Most cards in the two "bad" decks gave a $100 reward, while a few cards told subjects to hand over large sums. Most cards in the two "good" decks, by contrast, carried rewards of only $50, but the penalty cards were less severe as well. In the long run, choosing cards from the bad decks results in a net loss, and choosing from the good decks gives a net gain.


The normal individuals early on began to pick more often from the good decks and showed changes in electrical patterns in the skin that accompany changes in emotion. This behavior started well before the subjects could say that picking from the good decks seemed to be a better strategy. The brain-damaged patients, on the other hand, never expressed a hunch that some decks were riskier. Even after they had figured out that the "bad" decks led to an overall loss, they continued to choose from them some of the time.


According to Damasio, the findings suggest that in normal people, nonconscious emotional cues may play a role in decision-making before conscious processes do. He believes the ventromedial prefrontal cortex is part of a system that stores information about past rewards and punishments, and triggers the nonconscious emotional responses that normal people register as intuition or a "hunch." So agrees neuroscientist Read Montague of Baylor College of Medicine in Houston. "Something has collected the statistics ... and starts nudging behavior," Montague says, "all before [the subjects] know what is happening."

ダマシオによれば、この結果は、正常な人の場合、意識的なプロセスよりも先に、無意識的な感情の手がかりが意思決定に関与している可能性を示唆しているという。ダマシオは、腹内側前頭前野は、過去の報酬や罰に関する情報を保存するシステムの一部であり、普通の人が直感や「予感」として認識する無意識的な感情反応を引き起こすものだと考えている。ヒューストンのベイラー医科大学の神経科学者リード・モンタギューはそう同意している。"何かが統計を取り......行動を促し始めた "とモンタギューは述べてます。"すべて(被験者が)何が起こっているかを知る前に "である。

nudging behaviorのことを調べたときに見つけた。

ナッジとは? 意味、例、関連用語、構成要素、有効な場面、基本原則、事例について








| | Comments (0)

May 17, 2023


Ventromedial prefrontal cortex contributes to performance success by controlling reward-driven arousal representation in amygdala



Ventromedial prefrontal cortex contributes:腹内側前頭前野

脳の前方にある前頭前野は、思考や創造性、反応の抑制などを司る中枢であるが、腹内側部はその中でも下の内側部分である。この領域は特に、恐怖感や緊張感に対し、心を落ち着けさせるような感情制御(Emotion regulation)に関わっていると考えられている。 緊張を乗り越える脳内メカニズムを解明より

When preparing for a challenging task, potential rewards can cause physiological arousal that may impair performance. In this case, it is important to control reward-driven arousal while preparing for task execution. We recently examined neural representations of physiological arousal and potential reward magnitude during preparation, and found that performance failure was explained by relatively increased reward representation in the left caudate nucleus and arousal representation in the right amygdala (Watanabe, et al., 2019).


physiological arousal  生理的覚醒

生理的覚醒の上昇: 脅威や挑戦を目の前にして、心拍が上昇したり、呼吸が荒くなったり、手に汗をかいたり、 瞳孔が散大するような体の反応を指す。多くの場合は緊張感やプレッシャー、または「あがり」として意識される。緊張を乗り越える脳内メカニズムを解明より

caudate nucleus 尾状核

線条体: 大脳基底核に位置する脳領域。側坐核、尾状核、被殻から構成されている。特に腹側部分は報酬の 処理に関わっており、報酬期待の大きさや、実際にもらった報酬と期待報酬の誤差の情報などが処理されている。 緊張を乗り越える脳内メカニズムを解明より

Here we examine how prefrontal cortex influences the amygdala and caudate to control reward-driven arousal. Ventromedial prefrontal cortex (VMPFC) exhibited activity that was negatively correlated with trial-wise physiological arousal change, which identified this region as a potential modulator of amygdala and caudate.


Next we tested the VMPFC - amygdala - caudate effective network using dynamic causal modeling (Friston et al., 2003). Post-hoc Bayesian model selection (Friston and Penny, 2011) identified a model that best fit data, in which amygdala activation was suppressively controlled by the VMPFC only in success trials.

次に、動的因果関係モデル(Friston et al.、2003)を用いて、腹内側前頭前野(VMPFC)-扁桃体-尾状筋の有効ネットワークを検証した。事後ベイズ統計学モデル選択(Friston and Penny, 2011)により、成功試行においてのみ扁桃体活性化が腹内側前頭前野VMPFCによって抑制的に制御されるという、データに最も適合するモデルが特定された。

dynamic causal modeling 動的因果モデリング

動的因果モデリング (Dynamic Causal Modeling, DCM) は、汎用的に使える、神経回路におけるコネクティビティを仮説検証する分析手法です (Friston et al. (2003))。

Post-hoc Bayesian model 事後ベイズ統計学モデル

Furthermore, fixed connectivity strength from VMPFC to amygdala explained individual task performance. These findings highlight the role of effective connectivity from VMPFC to amygdala in order to control arousal during preparation for successful performance.




本研究成果のポイント 人間が興奮や緊張を乗り越え、課題パフォーマンスを向上させるために、腹内側前頭前野が感情の中枢である扁桃体を抑制的にコントロールしていることを発見した。

さらに、腹内側前頭前野から扁桃体への情報伝達がより強い人の方が、課題の平均成績が良いことが明ら かとなった。 今回明らかになった脳内のコントロールシステムは強いストレスやプレッシャーのある環境で働く人々が、自 身の持つ最大限のパフォーマンスを発揮できるためのトレーニング方法の開発に応用できる。






*1 生理的覚醒の上昇: 脅威や挑戦を目の前にして、心拍が上昇したり、呼吸が荒くなったり、手に汗をかいたり、 瞳孔が散大するような体の反応を指す。多くの場合は緊張感やプレッシャー、または「あがり」として意識される。

*2 線条体: 大脳基底核に位置する脳領域。側坐核、尾状核、被殻から構成されている。特に腹側部分は報酬の 処理に関わっており、報酬期待の大きさや、実際にもらった報酬と期待報酬の誤差の情報などが処理されている。

*3 扁桃体: 大脳辺縁系に位置する脳領域。感情の中枢と考えられており、感情を伴う学習や記憶の処理に関与 している。また、近年、生理的覚醒にも関与していることが報告されている。

*4 腹内側前頭前野: 脳の前方にある前頭前野は、思考や創造性、反応の抑制などを司る中枢であるが、腹内側 部はその中でも下の内側部分である。この領域は特に、恐怖感や緊張感に対し、心を落ち着けさせるような感情制御(Emotion regulation)に関わっていると考えられている。

*5 ロバスト回帰分析: 二つの事象の相互関係を解析する統計方法の一つ。似たものに相関解析があるが、ロバ スト回帰分析はそれに比べて外れ値(他の値から大きく外れた値)の影響を受けにくい。




| | Comments (0)

May 15, 2023


Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala





Fearful experiences can produce long-lasting and debilitating memories. Extinction of the fear response requires consolidation of new memories that compete with fearful associations. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear, which is associated with decreased ventromedial prefrontal cortex (vmPFC) control over amygdala activity. Vagus nerve stimulation (VNS) enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats.


Here we investigated whether pairing VNS with extinction learning facilitates plasticity between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA). Rats were trained on an auditory fear conditioning task, which was followed by a retention test and 1 day of extinction training. Vagus nerve stimulation or sham-stimulation was administered concurrently with exposure to the fear-conditioned stimulus and retention of fear conditioning was tested again 24 h later.


infralimbic (IL)  下辺縁皮質
basolateral complex 基底外側複合体

Vagus nerve stimulation-treated rats demonstrated a significant reduction in freezing after a single extinction training session similar to animals that received 5× the number of extinction pairings. To study plasticity in the IL-BLA pathway, we recorded evoked field potentials (EFPs) in the BLA in anesthetized animals 24 h after retention testing. Brief burst stimulation in the IL produced LTD in the BLA field response in fear-conditioned and sham-treated animals. In contrast, the same stimulation resulted in potentiation of the IL-BLA pathway in the VNS-treated group. The present findings suggest that VNS promotes plasticity in the IL-BLA pathway to facilitate extinction of conditioned fear responses (CFRs).

迷走神経刺激処理ラットは、1回の消去訓練セッション後、5倍の消去ペアリングを受けた動物と同様に、凍りつきの有意な減少を示した。下辺縁皮質IL-基底外側複合体 BLA経路の可塑性を調べるために、保持テストの24時間後に麻酔した動物でBLAの誘発電位(EFP)を記録しました。ILへの短時間のバースト刺激は、恐怖条件付け動物および偽薬投与動物において、BLAのフィールド反応に長期増強(LTP)をもたらした。一方、VNS投与群では、同じ刺激でIL-BLA経路が増強された。このことから、迷走神経刺激VNSはIL-BLA経路の可塑性を促進し、条件付恐怖反応(CFR)の消去を容易にすることが示唆された。

evoked field potentials (EFPs) 誘発電界電位(EFP)


シナプス前・後細胞間の伝達効率が,長期的に変化する現象をあらわす言葉.その代表例である長期増強(Long-term potentiation:LTP)は,シナプスの伝達効率が増加する現象である.またその逆である伝達効率が減少する現象を長期抑圧(long-term depression:LTD)と呼称される.実験医学onlineより

LTP(long term potentiation):長期増強(LTP)

Keywords: LTD; LTP; PTSD; anxiety; in vivo; local field potentials.

キーワード 長期抑圧(LTD)、長期増強(LTP)、心的外傷後ストレス障害(PTSD)、不安、イン・ビボ(生体内で)、局所集合電位

local field potential:局所集合電位
局所集合電位(local field potential)は、脳や脊髄といった神経組織の神経細胞により生じる電気信号を局所的に記録したもので、その領域の数千の細胞のシナプス後電位を反映しています。 局所集合電位は、睡眠中や行動中の脳活動のモニターにしばしば用いられます。生体医工学ウェブ辞典より




脳科学が証明した、緊張がほぐれる “意外すぎる” 行動










東北学院大学教養学部 准教授の金井嘉宏氏は、日本心理学会の機関誌で、社交不安症について説明しています。社交不安症患者は、自分のネガティブな思考やイメージに注意を向ける「自己注目」によって、不安を維持してしまうのだとか。















| | Comments (0)

May 11, 2023


Neuroscientists reverse memories’ emotional associations



MIT study also identifies the brain circuit that links feelings to memories.


Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.

ほとんどの記憶には、何らかの感情が付随しています: 海辺で過ごした1週間を思い出すと幸せな気持ちになり、いじめられたことを思い出すとネガティブな気持ちになる。

A new study from MIT neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics ? a technique that uses light to control neuron activity.


The findings, described in the Aug. 27 issue of Nature, demonstrated that a neuronal circuit connecting the hippocampus and the amygdala plays a critical role in associating emotion with memory. This circuit could offer a target for new drugs to help treat conditions such as post-traumatic stress disorder, the researchers say.


“In the future, one may be able to develop methods that help people to remember positive memories more strongly than negative ones,” says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience, director of the RIKEN-MIT Center for Neural Circuit Genetics at MIT’s Picower Institute for Learning and Memory, and senior author of the paper.


The paper’s lead authors are Roger Redondo, a Howard Hughes Medical Institute postdoc at MIT, and Joshua Kim, a graduate student in MIT’s Department of Biology.

論文の主執筆者は、MITのハワードヒューズ医学研究所のポスドクであるRoger Redondo氏と、MIT生物学部の大学院生であるJoshua Kim氏です。

Shifting memories


Memories are made of many elements, which are stored in different parts of the brain. A memory’s context, including information about the location where the event took place, is stored in cells of the hippocampus, while emotions linked to that memory are found in the amygdala.


Previous research has shown that many aspects of memory, including emotional associations, are malleable. Psychotherapists have taken advantage of this to help patients suffering from depression and post-traumatic stress disorder, but the neural circuitry underlying such malleability is not known.


malleability 可塑性・変容可能性

In this study, the researchers set out to explore that malleability with an experimental technique they recently devised that allows them to tag neurons that encode a specific memory, or engram. To achieve this, they label hippocampal cells that are turned on during memory formation with a light-sensitive protein called channelrhodopsin. From that point on, any time those cells are activated with light, the mice recall the memory encoded by that group of cells.



Last year, Tonegawa’s lab used this technique to implant, or “incept,” false memories in mice by reactivating engrams while the mice were undergoing a different experience. In the new study, the researchers wanted to investigate how the context of a memory becomes linked to a particular emotion. First, they used their engram-labeling protocol to tag neurons associated with either a rewarding experience (for male mice, socializing with a female mouse) or an unpleasant experience (a mild electrical shock). In this first set of experiments, the researchers labeled memory cells in a part of the hippocampus called the dentate gyrus.


dentate gyrus:海馬歯状回

Two days later, the mice were placed into a large rectangular arena. For three minutes, the researchers recorded which half of the arena the mice naturally preferred. Then, for mice that had received the fear conditioning, the researchers stimulated the labeled cells in the dentate gyrus with light whenever the mice went into the preferred side. The mice soon began avoiding that area, showing that the reactivation of the fear memory had been successful.


The reward memory could also be reactivated: For mice that were reward-conditioned, the researchers stimulated them with light whenever they went into the less-preferred side, and they soon began to spend more time there, recalling the pleasant memory.

報酬記憶も再活性化させることができた: 報酬条件付けをしたマウスが、あまり好まない側に行くたびに光で刺激すると、すぐに楽しい記憶を思い出して、その場所にいる時間が長くなった。

A couple of days later, the researchers tried to reverse the mice’s emotional responses. For male mice that had originally received the fear conditioning, they activated the memory cells involved in the fear memory with light for 12 minutes while the mice spent time with female mice. For mice that had initially received the reward conditioning, memory cells were activated while they received mild electric shocks.


Next, the researchers again put the mice in the large two-zone arena. This time, the mice that had originally been conditioned with fear and had avoided the side of the chamber where their hippocampal cells were activated by the laser now began to spend more time in that side when their hippocampal cells were activated, showing that a pleasant association had replaced the fearful one. This reversal also took place in mice that went from reward to fear conditioning.


Altered connections


The researchers then performed the same set of experiments but labeled memory cells in the basolateral amygdala, a region involved in processing emotions. This time, they could not induce a switch by reactivating those cells ? the mice continued to behave as they had been conditioned when the memory cells were first labeled.


basolateral amygdala 扁桃体基底外側部

This suggests that emotional associations, also called valences, are encoded somewhere in the neural circuitry that connects the dentate gyrus to the amygdala, the researchers say. A fearful experience strengthens the connections between the hippocampal engram and fear-encoding cells in the amygdala, but that connection can be weakened later on as new connections are formed between the hippocampus and amygdala cells that encode positive associations. “That plasticity of the connection between the hippocampus and the amygdala plays a crucial role in the switching of the valence of the memory,” Tonegawa says.



These results indicate that while dentate gyrus cells are neutral with respect to emotion, individual amygdala cells are precommitted to encode fear or reward memory. The researchers are now trying to discover molecular signatures of these two types of amygdala cells. They are also investigating whether reactivating pleasant memories has any effect on depression, in hopes of identifying new targets for drugs to treat depression and post-traumatic stress disorder.


molecular signatures 分子署名

David Anderson, a professor of biology at the California Institute of Technology, says the study makes an important contribution to neuroscientists’ fundamental understanding of the brain and also has potential implications for treating mental illness.

カリフォルニア工科大学の生物学教授であるDavid Anderson氏は、この研究は神経科学者の脳の基礎的理解に重要な貢献をし、また精神疾患の治療にも潜在的な影響を及ぼすと述べています。

“This is a tour de force of modern molecular-biology-based methods for analyzing processes, such as learning and memory, at the neural-circuitry level. It’s one of the most sophisticated studies of this type that I’ve seen,” he says.


The research was funded by the RIKEN Brain Science Institute, Howard Hughes Medical Institute, and the JPB Foundation.」








* 海馬歯状回のシナプスの可塑性が記憶の書き換えに重要

| | Comments (0)

May 06, 2023




When asked about the source of his information, Edgar Cayce replied that there were essentially two. The first was the subconscious mind of the individual for whom he was giving the reading and the second was the Akashic Records.


The Akashic Records, also known as "The Book of Life” or “God’s Book of Remembrance,” can be equated to the universe's super-computer system--or perhaps what today would be called cloud computing. They are the central storehouse of all information for every individual who has ever lived upon the earth. These records contain our every thought, deed, word, feeling, and intent. They have a tremendous influence on our everyday lives, our relationships, our feelings, our belief systems, and the potential realities we draw toward us. Edgar Cayce referred to the records this way:


Upon time and space is written the thoughts, the deeds, the activities of an entity ? as in relationships to its environs, its hereditary influence; as directed ? or judgment drawn by or according to what the entity's ideal is. Hence, as it has been oft called, the record is God's book of remembrance; and each entity, each soul ? as the activities of a single day of an entity in the material world ? either makes same good or bad or indifferent, depending upon the entity's application of self ...

-- Edgar Cayce Reading 1650-1

-- エドガー・ケイシー リーディング 1650-1

When Cayce accessed the Akashic Records of an individual, he had the ability to select the information that would be of the most help to that person at that particular time in his or her life. Frequently, a reading might suggest that only a selection of the available material was being provided, but that the individual was being given that which would be "most helpful and hopeful.”


When discussing the Book of Life, he stated that it was, "The record of God, of thee, thy soul within and the knowledge of same." (281-33) When asked the difference between the Book of Life and the Akashic Records, he explained:

生命の書について語るとき、彼は「神の記録、汝と汝の魂の内なる記録、そして同じ知識」であると述べた。(281-33) 「生命の書」と「アカシックレコード」の違いを尋ねられたとき、彼はこう説明した:

Q. [What is meant by] The Book of Life?

Q. [生命の書とは何を意味するのか?

A. The record that the individual entity itself writes upon the skein of time and space, through patience ? and is opened when self has attuned to the infinite, and may be read by those attuning to that consciousness…

A. 個体そのものが、忍耐によって時間と空間の襞に書き込む記録であり、自己が無限と同調したときに開かれ、その意識と同調した者が読むことができる...。
Q. The Book of God's Remembrances?

Q. 神の記憶の書?

A.This is the Book of Life.


Q. The Akashic Records?

Q. アカシックレコードは?

A. Those made by the individual, as just indicated.

A. 今示したように、個人によって作られたものです。

-- Edgar Cayce Reading 2533-8

-- エドガー・ケイシー・リーディング 2533-8

Cayce indicated that these records are more than just a storehouse for the past when he stated:


Yes, we have the body here, and the record as has been made and as may be made with the will as exercised, and the condition irrespective of the will's influence or effect as has been created. We have conditions that might have been, that are, and that may be. Do not get the three mixed up or crossed purposes of either.


-- Edgar Cayce reading 304-5

- エドガー・ケイシーリーディング 304-5

Why and how are our lives affected by the Akashic Records? These records connect each and every one of us to each other. They contain the essence of every archetypal symbol or mythic story which has ever deeply touched patterns of human behavior and experience. They have been the inspiration for dreams and invention. They draw us toward or repel us from one another. They mold and shape levels of human consciousness. They are a portion of Divine Mind. They are the unbiased judge and jury that attempt to guide, educate, and transform every individual to become the very best that she or he can be. They embody an ever-changing array of possible futures that are called into potential as we interact and respond to the circumstances of our lives.


Cayce’s readings suggest that each of us writes the story of our lives through our thoughts, our deeds, and our interactions with the rest of creation. This information has an effect on us in the here and now. In fact, the Akashic Records have such an impact upon our lives and the potentials and probabilities we draw toward us that any exploration of them cannot help but provide us with insights into the nature of ourselves and our relationship to the universe.


There is much more to our lives, our histories, and our individual influence upon our tomorrows than we have perhaps dared to imagine. By accessing information from the Akashic Records, the universe's computer database, much might be revealed to us. The world as we have collectively perceived it is but a faint shadow of reality.








配信日時 (x)今すぐ( )下書き

| | Comments (0)

April 25, 2023


Science and the Akashic Field



*Presents the unifying world concept long sought by scientists, mystics, and sages: an integral theory of everything.


Theory of Everything:万物の理論

*Explains how modern science has rediscovered the Akashic field of perennial philosophy


perennial philosophy 永遠の哲学

*New edition updates ongoing scientific studies, presents new research inspired by the first edition, and includes new case studies and a section on animal telepathy


*Mystics and sages have long maintained that there exists an interconnecting cosmic field at the roots of reality that conserves and conveys information, a field known as the Akashic record. Recent discoveries in vacuum physics show that this Akashic Field is real and has its equivalent in science's zero-point field that underlies space itself.


cosmic field 宇宙場
vacuum physics:真空物理学
vacuum physicsを調べていたらquantum vacuum 量子真空に出会いました。

*This field consists of a subtle sea of fluctuating energies from which all things arise: atoms and galaxies, stars and planets, living beings, and even consciousness. This zero-point Akashic Field is the constant and enduring memory of the universe. It holds the record of all that has happened on Earth and in the cosmos and relates it to all that is yet to happen.


*In Science and the Akashic Field, philosopher and scientist Ervin Laszlo conveys the essential element of this information field in language that is accessible and clear. From the world of science he confirms our deepest intuitions of the oneness of creation in the Integral Theory of Everything. We discover that, as philosopher William James stated, “We are like islands in the sea, separate on the surface but connected in the deep."

科学 とアカシックフィールドの本では、哲学者で科学者のアーヴァイン・ラズロが、この情報フィールドの本質的な要素を、アクセス可能で明確な言語で伝えています。 科学の世界から、彼は万物の統合理論における創造の一体性についての私たちの最も深い直感を確認します。 哲学者のウィリアム・ジェームズが述べたように、「私たちは海の中の島のようであり、表面では別々であるが、深い海のところではつながっています」。



万物の理論(ばんぶつのりろん、英: Theory of Everything; ToE)とは、自然界に存在する4つの力、すなわち電磁気力(電磁力とも言う)・弱い力・強い力・重力を統一的に記述する理論(統一場理論)の試みである。

このうち、電磁気力と弱い力はワインバーグ・サラム理論(電弱理論)によって電弱力という形に統一されている。電弱力と強い力を統一的に記述する理論は大統一理論(GUT:Great Unification Theory)と呼ばれ、現在研究が進められている。最終的には重力も含めた全ての力を統一的に記述する理論が考えられ、これを万物の理論または超大統一理論(SUT; Super Unification Theory)という。


この語は16世紀に Agostino Steuco が著書 De perenni philosophia libri X (1540) で初めて使用した。17世紀にはゴットフリート・ライプニッツがすべての宗教の基礎となる思想を示すのにこの言葉を用いた。オルダス・ハクスリーは1945年に、『永遠の哲学(英語版)』 (The Perennial Philosophy) を出版し、永遠の哲学を有名にした。




Akashic fieldを調べていたらこの本の日本語版の本に出会いました。

Science and the Akashic Field: An Integral Theory of Everything
アーヴィン・ラズロ『叡知の海・宇宙-物質・生命・意識の統合理論をもとめて』(吉田三 知世訳、日本教文社)


アカシックレコード(英: akashic records)は、元始からのすべての事象、想念、感情が記録されているという世界記憶の概念で[1][2]、アーカーシャあるいはアストラル光[注釈 1]に過去のあらゆる出来事の痕跡が永久に刻まれているという考えに基づいている[6]。宇宙誕生以来のすべての存在について、あらゆる情報がたくわえられているという記録層[7]を意味することが多い。アカシャ年代記(独: Akasha-Chronik、英: akashic chronicles、アーカシャ記録、アカシアの記録[8])とも。近代神智学[注釈 2]の概念であり、その他の現代オカルティズムの分野(魔術等)でも神智学用語として引き合いに出されることがある。また、陰に陽に神智学運動の影響を受けている欧米のニューエイジや、日本の精神世界・スピリチュアル、占い、予言といったジャンルでも使われる用語でもある。アカシックレコードが存在する科学的根拠はない[9]。Wikipedia「アカシックレコード」より」


ウィリアム・ジェームズ(William James、1842年1月11日 - 1910年8月26日)は、アメリカ合衆国の哲学者、心理学者である。意識の流れの理論を提唱し、ジェイムズ・ジョイス『ユリシーズ』や、アメリカ文学にも影響を与えた。パースやデューイと並ぶプラグマティストの代表として知られている。弟は小説家のヘンリー・ジェームズ[1]。著作は哲学のみならず心理学や生理学など多岐に及んでいる。心理学の父である。



アーカーシャ(サンスクリット語: ????、?k??a、独: Akasha、アカシャ、阿迦奢)は、インドで「虚空」「空間」「天空」を意味する言葉であり、インドの五大のひとつである。


単に「空」と訳されることも多いが、この場合は「アーカーシャ」ではなく「シューニャ」(サンスクリット語: ?????, ??nya)を意味する場合があり、両者は意味する由来がまったく異なるため解釈に重大な影響を与えないよう慎重な注意が必要である。


| | Comments (0)

«英語版書評:身体はトラウマを記録する : 脳・心・体のつながりと回復のための手法