« 繊細なマグノリア・ジャスミンの香りがヒトフェロモン受容体を活性化する。Science daily より | Main | 大腸がん細胞の増殖は香り物質トロエナンによって阻害Science dailyより »

May 17, 2017

生物系および内在性の光の場からの自発的極微弱発光

Spontaneous ultraweak photon emission from biological systems and the endogenous light field.

生物系および内在性の光の場からの自発的極微弱発光

ultraweak photon emission 極微弱発光

PUBMEDより

Forsch Komplementarmed Klass Naturheilkd. 2005 Apr;12(2):84-9.

Schwabl H1, Klima H.

Author information

1Padma AG, Schwerzenbach, Switzerland.

Abstract

要旨

Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence.

さらに、最も驚くべき生物学的電磁現象の1つは生命体からの極微弱発光(UPE)である。生物および組織は自発的に光の測定可能な強度、すなわち電磁スペクトル(380-780nm)の可視部分の光子、条件および活力に応じて1から1,000光子×s-1×cm-2の範囲で光を放出する。生物発光または化学発光法などの他の生物学的発光プロセスと極微弱発光(UPE)を混同しないことが重要です。

electromagnetic phenomena 電磁現象
electromagnetic spectrum 電磁スペクトル
bioluminescence 生物発光
chemiluminescence 化学発光法

This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields.

この記事では、極微弱発光UPEの経験的現象である光子の量子的性質に関する物理学の基本的な考察を検討します。これは、この放射の非熱的起源の記述につながる。これは、熱力学的平衡からはるかに離れた散逸過程としての生命現象の現代的な理解とよく一致している。また、極微弱発光UPEは電磁場によって基本的に駆動される生命維持過程の理解を支持する。

empirical phenomenon 経験的現象
quantum nature 量子性
non-thermal origin 非熱的起源
dissipative processes 散逸過程
thermodynamic equilibrium 熱力学的平衡
life sustaining 生命維持
The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system.

強度とスペクトル分布のようなUPEの基本的な特徴は原則として多くの実験的状況で知られている。ヒト白血球の極微弱発光UPEは特定の要因によって影響されることになる約1011光子×s-1の内因性光の場に寄与する。さらに、UPEの統計的性質を明らかにするため、そして、生物システムの根本的なメカニズムについての問題を答えるためにさらなる研究が必要である。

spectral distributionスペクトル分布,分光組成
statistical properties 統計的性質

In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?

原理的には、UPEの統計的特性は発光構造の位相空間ダイナミクスを再構成することを可能にする。人体の電磁相互作用の適切な理解が達成されるまで、多くの未解決な問題が残されています。どの構造が電磁放射の受容体および放射体として機能するか? 電磁情報はどのように細胞内で受信され、処理されるか?

phase-space 位相空間
electromagnetic interaction 電磁相互作用

用語

電磁スペクトル
https://ja.wikipedia.org/wiki/%E9%9B%BB%E7%A3%81%E3%82%B9%E3%83%9A%E3%82%AF%E3%83%88%E3%83%AB

電磁スペクトル(でんじすぺくとる、英語: Electromagnetic spectrum)とは、存在し得る、すべての電磁波の周波数(または波長)帯域のことである。

電磁スペクトルの周波数は、超低周波(長波長側)からガンマ線(短波長側)にわたって広がっており、その規模は数千 km の長さから原子の幅をも下回る長さまで無限にわたっている。

生物発光
https://ja.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E7%99%BA%E5%85%89

生物発光(せいぶつはっこう)とは、生物が光を生成し放射する現象である。化学的エネルギーを光エネルギーに変換する化学反応の結果として発生する。ケミルミネセンスのうち生物によるものを指す。英語ではバイオルミネセンス(Bioluminescence)と言い、ギリシア語のbios(生物)とラテン語のlumen(光)との合成語である。生物発光はほとんどの場合、アデノシン三リン酸(ATP)が関係する。この化学反応は、細胞内・細胞外のどちらでも起こりうる。

化学発光
https://ja.wikipedia.org/wiki/%E5%8C%96%E5%AD%A6%E7%99%BA%E5%85%89

化学発光(かがくはっこう)または、ケミルミネセンス(Chemiluminescence)とは、化学反応によって励起された分子が基底状態に戻る際、エネルギーを光として放出する現象である。この中で分子単独が励起状態を形成するものを直接発光と呼び、系内に存在する蛍光物質等へエネルギー移動し、蛍光物質の発光が観測されるものを間接化学発光と呼ぶ。

粒子と波動の二重性
https://ja.wikipedia.org/wiki/%E7%B2%92%E5%AD%90%E3%81%A8%E6%B3%A2%E5%8B%95%E3%81%AE%E4%BA%8C%E9%87%8D%E6%80%A7

粒子と波動の二重性(りゅうしとはどうのにじゅうせい、Wave–particle duality)とは、量子論・量子力学における「量子」が、古典的な見方からすると、粒子的な性質と波動的な性質の両方を持つという性質のことである。光のような物理現象が示す、このような性質への着目は、クリスティアーン・ホイヘンスとアイザック・ニュートンにより光の「本質」についての対立した理論(光の粒子説と光の波動説)が提出された1600年代に遡る。

散逸
https://ja.wikipedia.org/wiki/%E6%95%A3%E9%80%B8

散逸(さんいつ)とは、物理学においては運動などによるエネルギーが、抵抗力によって熱エネルギーに不可逆的に変化する過程をいい、熱力学においては自由エネルギーの減少に相当する。

例としては、運動エネルギーが摩擦、粘性や乱流によって、また電流エネルギーが電気抵抗によって熱に変化するなどがある。

熱力学的平衡
https://ja.wikipedia.org/wiki/%E7%86%B1%E5%8A%9B%E5%AD%A6%E7%9A%84%E5%B9%B3%E8%A1%A1

熱力学的平衡(ねつりきがくてきへいこう、英語: thermodynamic equilibrium)は、熱力学的系が熱的、力学的、化学的に平衡であることをいう。このような状態では、物質やエネルギー(熱)の正味の流れや相転移(氷から水への変化など)も含めて、熱力学的(巨視的)状態量は変化しない。

位相空間
https://ja.wikipedia.org/wiki/%E4%BD%8D%E7%9B%B8%E7%A9%BA%E9%96%93_(%E7%89%A9%E7%90%86%E5%AD%A6)

物理学における位相空間(いそうくうかん、英: phase space)とは、力学系の位置と運動量を座標(直交軸)とする空間のことである。

電磁相互作用
https://ja.wikipedia.org/wiki/%E9%9B%BB%E7%A3%81%E7%9B%B8%E4%BA%92%E4%BD%9C%E7%94%A8

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。

概要[編集]
電磁相互作用で発生する力は電磁気力(でんじきりょく)といい電荷にはプラスとマイナスがあり、同じもの同士で斥力、異なるもの同士で引力が働く。ゲージ場理論より、相互作用を媒介する粒子が存在し、電磁相互作用の場合は光子が媒介する。電磁相互作用を媒介する光子を仮想光子と呼ぶ事もある。

関連文献
生体極微弱発光現象の量子光学的分析法の研究

http://www.ishida-kinenzaidan.or.jp/research/pdf/h14_kobayashi.pdf

お知らせ

リアノン・ルイス女史来日セミナー:がんケアにおけるアロマサイコロジー:アロマセラピー介入によるケアおよびやすらぎの向上2017年10月21日(土)〜10月22日(日)(2日間)募集のおしらせ

http://aromahonjin.way-nifty.com/blog/2017/04/2017102110192-b.html

精油のお求めはフィトアロマ研究所へ

http://phytoaroma.ocnk.net/

|

« 繊細なマグノリア・ジャスミンの香りがヒトフェロモン受容体を活性化する。Science daily より | Main | 大腸がん細胞の増殖は香り物質トロエナンによって阻害Science dailyより »